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Abstract. In this paper, we discuss the physical consequences of pseudospin SU(2)-symmetry
breaking in a negative-U Hubbard model at half-filling. If pseudospin symmetry is spontaneously
broken while its unique subgroup U(1) remains invariant, this will lead to a charge-density-
wave (CDW) ground state. Furthermore, if the U(1) symmetry is also broken, the ground state
will have off-diagonal long-range order, signalling a superconductor. In this case, CDW and
superconductivity coexist and form a supersolid. Finally, we show that CDW suppress, but do
not destroy superconductivity.

Spontaneous symmetry breaking in condensed-matter systems may produce some physically
observable consequences [1]. For example, superfluidity and superconductivity come from
the U(1)-symmetry breaking, and ferromagnetism and antiferromagnetism in an isotropic
spin system come from the spontaneous spin SU(2)-symmetry breaking. Pseudospin SU(2)
symmetry, discovered in the Kondo lattice model [2] and one-band Hubbard model [3, 4, 5],
is a novel kind of rotational invariance in the particle–hole space, and has a dual relationship
with the usual spin symmetry [6, 7]. It has generated a lot of interest among theoretical
physicists and many studies have been carried out in this direction. Using pseudospin
operators, Yang [3] has proposed the so-called ‘η-pairing’ mechanism of superconductivity,
and his idea was later realized in the ground state of the negative-U Hubbard model [6, 8].
Zhang has discussed the physical consequences of pseudospin SU(2)-symmetry breaking
in the ‘η-pairing’ superconductor [5]. Another important outcome of pseudospin SU(2)
symmetry is the coexistence of charge-density waves (CDW) and superconductivity—i.e. a
supersolid. By using the partial particle–hole transformation [9], the positive-U Hubbard
model is mapped into a negative-U Hubbard model. It is believed that the ground state
with positive U (at least in the large-U case) at half-filling is antiferromagnetic. The
antiferromagnetic long-range order in the transverse direction for the positive-U model
corresponds to the off-diagonal long-range order (ODLRO) in the negative-U model through
the mapping, while the longitudinal antiferromagnetic order corresponds to the CDW long-
range order. Therefore, in the negative-U Hubbard model there is possible a coexistence
of superconductivity characterized by the ODLRO and CDW characterized by the diagonal
long-range order (DLRO) [10]. Usually, ODLRO is characteristic of superconductivity, but
in a supersolid with both ODLRO and DLRO whether this is still true is an open question.
In [11] it was concluded that the critical magnetic field for a supersolid with pseudospin
symmetry must be zero, since the superconducting state can freely rotate to the CDW state
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because of the SU(2) symmetry and degeneracy. This leads to the question of how to
explain the superconducting properties of a supersolid.

In this paper, we discuss some physical consequences of pseudospin SU(2) symmetry
in the negative-U Hubbard model [12]. First, we show that if pseudospin symmetry is
spontaneously broken while its unique subgroup U(1) remains invariant, this will lead to a
CDW ground state, and the appearance of two massless collective modes according to the
Goldstone theorem [14]. Second, if the U(1) symmetry is also broken, the ground state will
have the ODLRO, signalling a superconductor. In this case, the ODLRO and CDW coexist
and a supersolid is formed. U(1)-symmetry breaking will also give rise to a third branch
of massless mode. Finally, we discuss the superconducting properties of a supersolid. We
show that CDW suppress, but do not destroy superconductivity, and supersolids exhibit both
the Meissner effect and zero resistance. We also calculate the penetration depth in terms of
the order parameters for superconductors and CDW. We should point out that the traditional
view is to consider CDW as being produced by breaking of the translational symmetry which
is a discrete symmetry in the Hubbard model case. The significance of our work is that we
find additional continuous symmetry for CDW which has important physical consequences
(like Goldstone bosons). Our finding of the relationship between CDW and pseudospins
may not be restricted to the Hubbard model. For example, pseudospin symmetry also exists
in the Su–Schrieffer–Heeger Hamiltonian (see [15]) describing one-dimensional polymers.

The one-band Hubbard model on a bipartite lattice3 made up of sublattices A and B
is defined by the Hamiltonian

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ + 2

3
U

∑
i∈3

S̃i · S̃i + 2µ
∑
i∈3

S̃z
i (1)

wherec
†
iσ andciσ are the creation and annihilation operators for an electron with spinσ at

site i, respectively. The summation of〈ij〉 runs over all possible nearest-neighbour pairs.
µ is the chemical potential and is determined by the electron density.S̃i is a pseudospin
operator and is defined by

S̃
+
i = ε(i)ci↑ci↓

S̃
−
i = ε(i)c

†
i↓c

†
i↑

S̃
z

i = 1
2(1 − ni↑ − ni↓)

(2)

whereε(i) = +1 for i ∈ A, and −1 for i ∈ B. They obey the same commutation relation
as the regular spin operators. The total pseudospin operator isS̃ = ∑

i S̃i , and its three
components can be used as the generators to construct a SU(2) group. The Hamiltonian in
equation (1) obeys the commutation relations

[H, S̃
±

] = ∓2µS̃
±

[H, S̃
z
] = 0. (3)

Therefore, whenµ = 0, H has pseudospin SU(2) symmetry, and whenµ 6= 0, the symmetry
is explicitly broken by the term containing the chemical potential. The latter is very similar
to the case of the isotropic spin Heisenberg model in the presence of an external magnetic
field. On the other hand,̃S

z
always commutes with the Hamiltonian. Thus, the total

number of electrons is conserved, and the Hamiltonian always possesses U(1) symmetry,
where U(1) is the unique subgroup of SU(2). In this paper, we are interested in the physical
consequences of spontaneous pseudospin SU(2)-symmetry breaking and for our purposes
we will only discuss the case withµ = 0 andU < 0. In this case, if the ground state does
not possesses pseudospin SU(2) symmetry, as the Hamiltonian does, then the spontaneous
symmetry breaking occurs.
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From the structure of the SU(2) group, there are two possibilities for the pseudospin
symmetry being spontaneously broken: (i) the SU(2) symmetry is broken while its subgroup
U(1) remains invariant; and (ii) the U(1) symmetry is also broken. We show that case (i)
will produce the CDW ground state. Its pseudospin-z-component operator is related to the
charge density, and its corresponding long-range order is that of CDW. The CDW state at
half-filling with the order parameter

1√
N3

S̃z
Q = 1

N3

∑
i

ε(i)〈S̃z

i 〉 = − 1

2N3

∑
k,σ

〈c†
k,σ ck+π,σ + c

†
k+π,σ ck,σ 〉

can be expressed as

|CDW〉 =
∏
k,σ

(ukc
†
k,σ + vkc

†
k+π,σ )|0〉 (4)

with
1

N3

∑
k

ukvk 6= 0

where thek is within half of the Brillouin zone, although we have〈CDW|S̃±|CDW〉 =
〈CDW|S̃z|CDW〉 = 0, but onlyS̃

z|CDW〉 = 0 andS̃
±|CDW〉 6= 0. The SU(2) symmetry

in a state has been broken unless all eigenvalues for the operatorS̃ are zero. Therefore,
|CDW〉 preserves the conservation of the particle number (or U(1) symmetry), but destroys
the SU(2) symmetry.

One of the strong pieces of evidence to support CDW as products of pseudospin
symmetry breaking is the existence of massless modes, i.e., Goldstone bosons. According
to the Goldstone theorem [14], when a continuous symmetry is spontaneously broken, there
must exist some massless modes. The appearance of CDW will produce two massless
modes. To see this, we first consider the following correlation functions:

F+(t, t ′) = −iθ(t − t ′)
〈[

S̃
+
(t),

∑
i

ε(i)S̃
−
i (t ′)

]〉
(5)

F−(t, t ′) = −iθ(t − t ′)
〈[

S̃
−
(t),

∑
i

ε(i)S̃
+
i (t ′)

]〉
(6)

where 〈· · ·〉 indicates the thermodynamic average. By using the commutation relation
between pseudospin operators and the Hamiltonian, we have

F±(ω) = 2

〈∑
i

ε(i)S̃
z

i

〉/
(ω ∓ 2µ + iδ). (7)

If the CDW order parameter〈 ∑
i

ε(i)S̃
z

i

〉/
N3 6= 0

then there are two collective modesω0 = ±2|µ|. It should be noticed that if the chemical
potentialµ is not equal to zero, i.e., the symmetry is explicitly broken, the two collective
modes are massive. If the CDW state arises in the half-filling case, which is our interest
in this paper, thenµ = 0 and there appear two massless modes according to equation (7),
which illustrates that it is the symmetry-breaking CDW ground state which produces the two
massless modes. We should point out that only one branch is directly observable because
the other one is of negative energy.
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Case (ii) will lead to the coexistence of CDW and superconductivity. As is well known,
the U(1)-symmetry breaking gives rise to a superconductor. The BCS superconducting state
with an order parameter〈c†

k,↑c
†
−k,↓〉 can be written as [16]

|BCS〉 =
∏
k

(uk + vkc
†
k,↑c

†
−k,↓)|0〉. (8)

Herek is within the Brillouin zone. Clearly,|BCS〉 breaks the conservation of the particle
number since|BCS〉 is not an eigenstate of̃S

z
. Superconductivity in a system with

pseudospin symmetry can be understood as follows. Pseudospin operators, like the usual
spin-1/2 operators, can be regarded as operators for hard-core bosons. The raising and
lowering operators consist of the local singlet pairs of electrons. Obviously, no two pairs
can occupy one site by the Pauli principle. If the hard-core bosons condense macroscopically
at a low temperature, this gives rise to superconductivity (the boson here has charge 2e).
If the condensation happens at the momentum valueq = π, the order parameter can be
written as 〈

1

N3

∑
i

exp(iq · π)S̃
+
i

〉
= 1

N3

∑
k

〈ck↑c−k↓〉

which is that of the usual BCS superconductor. If the condensation happens atq = 0, its
order parameter is〈

1

N3

∑
i

S̃
+
i

〉
= 1

N3

∑
k

〈ck+π↑c−k↓〉.

In this case, the pseudospin obeys the relationshipS̃2 − S̃2
z = O(N2

e ), which is the criterion
for the η-pairing superconductor, as Yang proposed [3]. Such a phenomenon only happens
in the ground state of the negative-U case with 2NA > Ne > 2NB (NA and NB are two
sublattice site numbers), and there it is found that∣∣∣∣〈 1

N3

∑
i

ε(i)S̃
±
i

〉∣∣∣∣ >

∣∣∣∣〈 1

N3

∑
i

S̃
±
i

〉∣∣∣∣ 6= 0

in the thermodynamic limit [17]. Thus, the two kinds of ODLRO must coexist in theη-
pairing superconductor. When the condensation occurs, adding or removing a boson in the
condensate does not change the total energy. Thus the chemical potentialµ is equal to zero.
Furthermore, the condensation also breaks the U(1) symmetry in the thermodynamic limit.
Therefore, the local pairing superconductivity is product of both pseudospin symmetries
SU(2) and U(1) spontaneously breaking. The breaking of U(1) should give rise to another
massless mode [19]. The correlation function is defined as [5]

F0(t, t
′) = −iθ(t − t ′)

〈[
S̃

z
(t),

∑
i

ε(i)S̃−(t ′)
]〉

(9)

and

F0(ω) = −
〈∑

i

ε(i)S̃−

〉/
(ω + iδ). (10)

Together with the two massless modes produced by CDW, there are three massless modes
when U(1) symmetry is also broken: two for CDW and one for superconductivity, as we
list in equations (7) and (10), which coincides with the Goldstone theorem [14]. Therefore,
in this case, the CDW and superconductivity must coexist.The SU(2) and U(1) symmetry
spontaneously breaking gives rise to a supersolid.
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Although we are not restricted to low-dimensional systems, we would like to mention
that spontaneous pseudospin symmetry breaking even occurs in some low-dimensional
systems. Quantum fluctuation in low-dimensional systems is usually very strong, which
tends to kill long-range order. However, there are some counter-examples. For instance,
[6] provides a rigorous example of quasi-one-dimensional system where the ground state
possesses ODLRO. In this case it appears that the geometric structure of system plays a
central role for the long-range correlations of electrons. It is able to suppress quantum
fluctuation, and ODLRO and CDW LRO survive in the ground state. In a positive-U case
at half-filling, the same geometric structure is also able to suppress the quantum fluctuation
and to preserve the antiferromagnetic LRO in the ground state [18, 20]. However, the
possibility of spontaneous pseudospin symmetry breaking was ruled out by Kubo and Kishi
for three and fewer dimensions [13].

Next we discuss the diamagnetism and resistance in a supersolid that result from
spontaneous pseudospin symmetry breaking on the basis of the mean-field theory. CDW
have diagonal long-range order and this might suppress superconductivity characterized by
ODLRO. However, whether it could destroy superconductivity completely is an interesting
and open question. As an example, here we discuss the case of a three-dimensional cubic
lattice. It is believed that the ground state is a supersolid. The mean-field approach is useful
only if the ground state possesses corresponding long-range correlations. In the mean-field
theory, the Hamiltonian for the coexistence of CDW and superconductivity is reduced to

H =
∑
k,σ

γkc
†
k,σ ck,σ +

∑
k

(1∗c−k,↓ck,↑ + 1c
†
k,↑c

†
−k,↓)

− ρ
∑

k

c
†
k,σ ck+π,σ + N3

3

2|U | (1
2 + ρ2) (11)

where

1 = 2

3

1

N3

U
∑

i

eiπ·ri 〈S̃+
i 〉 and ρ = 2

3

1

N3

U
∑

i

eiπ·ri 〈S̃z

i 〉.

The kinetic energy isγk = −2t (coskx + cosky + coskz). In this approximation, one finds
that the ground-state energy, the kinetic energy and the equation for the order parameters
depend only on the parameterR =

√
12 + ρ2, and the states with pure CDW and pure

superconductivity are degenerate. However, we should point out that the supersolid has a
unique non-degenerate ground state, as shown beyond the mean-field theory [7, 20].

Generally speaking, the Meissner effect and zero resistance are two hallmarks of a
superconductor. In this model, the current operator is

j0 = iet
∑
i,δ,σ

δc
†
i+δ,σ ci,σ (12)

whereδ is the lattice vector for the nearest-neighbour sites. When the system is in the
presence of a weak magnetic field, the linear response theory [19, 21] tells us that the
response current can be expressed by

jµ = −te2
∑
i,σ

〈g|c†
i+eµ,σ ci,σ + c

†
i,σ ci+eµ,σ |g〉Aµ(ri , t)

+ i
∑
i,i ′,ν

∫
dt ′ 〈g|[j0,µ(ri , t), j0,ν(r

′
i , t

′)]|g〉θ(t − t ′)Aν(r
′
i , t

′). (13)

eµ is a unit vector along the directionµ = (x, y, z) and |g〉 is the ground state in the
absence of the field. The first term in equation (13) is diamagnetic and the second term is
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paramagnetic. Furthermore,

ji(q, ω) = −e2[〈−Ki〉δij − Rij (q, ω)]Aj(q, ω) (14)

where

〈Ki〉 = −2

3

1

N3

∑
k

γ 2
k

ωk
(15)

and

Rij (k, ω) = −i
∫ ∞

−∞

dt

2π
eiωt 〈g|[ji(q, t), jj (−q, 0)]|g〉θ(t). (16)

The superfluid density is determined by(
ns

m

)∗
≡ 〈−Ki〉 − Rii(qi = 0, qj 6=i → 0, ω = 0) = 8t2 1

N3

∑
k

sin2 ki

12

ω3
k

. (17)

For a pure CDW state withρ = R and1 = 0,(
ns

m

)∗

ρ=R,1=0

= 2

3

1

N3

∑
k,σ

γ 2
k

ωk
− 8t2 1

N3

∑
k

sin2 kx

R2

ω3
k

= 0 (18)

[22]. Therefore, the superfluid density(ns/m)∗ for the supersolid ground state with both
CDW and superconductivity is proportional to12 and is always positive and non-zero as
long as1 6= 0. Furthermore, as the quasiparticle spectrum has a finite energy gapR, the
Drude weight is equal to the superfluid weight [21]:

D

πe2
≡

(
n

m

)∗
≡ 〈−Kx〉 − Re{Rii(q = 0, ω → 0)} =

(
ns

m

)∗
6= 0 (19)

which implies zero resistance. The penetration depth for a supersolid is

λs = (4πnse
2/mc2)−1/2

and

λc =
(

4πe2

3c2N3

∑
k

γ 2
k

ωk

)1/2

is the penetration depth for a pure superconductor withρ = 0 and1 = R. We have

λs =
(

1 + ρ2

12

)1/2

λc > λc. (20)

This expression indicates that the perfect diamagnetism arises as soon as ODLRO is present,
i.e.,1 6= 0. When1 → 0, λs approaches infinity, and the diamagnetism disappears. Hence,
the order parameter1 guarantees superconductivity with both the Meissner effect and zero
resistance.λs will increase with the CDW order parameterρ. Thus, in the supersolid the
CDW suppresses the superconductivity, but does not destroy it completely. In the negative-
U case on a cubic lattice, the SU(2) symmetry ensures that the ratio forρ and1 is fixed
at ρ/1 = 1/

√
2 [7], which gives the valueλs = √

3/2λc. Therefore, we conclude that
the supersolid is a true superconductor, not an insulator as was being claimed in previous
studies [11, 23].

Before ending the paper, we would like to discuss some experimental implications of our
results. The following discussions are only meaningful if the experimental samples can be
approximately described by Hamiltonians which contain the pseudospin SU(2) symmetry.
The coexistence of CDW and superconductivity has been observed in several materials
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[24]. The collective modes are the products of the spontaneous symmetry breaking. There
are two branches of massless modes accompanying the appearance of CDW, but only one
is experimentally observable, due to the negative energy of the other branch for finite
momentum. After U(1)-symmetry breaking, a new branch of massless mode should appear.
The massless mode and massive mode correspond to the phase mode and amplitude mode
of the order parameter; thus, they usually appear as a pair [25]. The massive modes have
been observed experimentally [26]. The number of modes is one if the system is a CDW
ground state and two if CDW coexist with superconductivity; these numbers agree with our
findings.

In summary, the CDW in the Hubbard model is the product of spontaneous pseudospin
SU(2)-symmetry breaking, and furthermore if its subgroup U(1) symmetry is also broken,
there is coexistence of both CDW and superconductivity. The additional global and
continuous symmetry breaking presents important and physically observable consequences,
and provides a natural understanding of a supersolid.
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